Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679729

RESUMO

Stable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions. Samples were found to be electrochemically active against sulcotrione, a well-recognized herbicide. Electrochemical sensors based on the synthesized microspheres were successfully adapted for natural water reservoir analysis and exhibited low levels of detection of 0.61 µM, limit of quantification of 1.86 µM, wide dynamic linear range from 2 to 200 µM, good selectivity, excellent reproducibility and in-time stability.


Assuntos
Fósforo , Titânio , Titânio/química , Reprodutibilidade dos Testes , Óxidos/química , Água
2.
Chemphyschem ; 22(24): 2550-2561, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34609055

RESUMO

Considering the vast importance of peptide and protein interactions with inorganic surfaces, probing hydrogen bonding during their adsorption on metal oxide surfaces is a relevant task that could shed light on the essential features of their interplay. This work is devoted to studying the dipeptides' adsorption on anatase nanoparticles (ANs) in light and heavy water to reveal differences arising upon the change of the major hydrogen bonding carrier. Thermodynamic study of six native dipeptides' adsorption on ANs in both media shows a strong influence of the solvent on the Gibbs free energy and the effect of side-chain mobile protons on the entropy of the process. The adsorption is endothermic irrespective of the medium and is entropy-driven. Computer simulations of peptide adsorption in both media shows similarity in binding via an amino group and demonstrates structural features of protonated and deuterated peptides in obtained complexes. Calculated peptide- anatase nanoparticle (AN) descriptors indicate surface oxygens as points of peptide-nanoparticle contacts.

3.
J Vis Exp ; (158)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32338648

RESUMO

Fundamentals of inorganic-organic interactions are critically important in the discovery and development of novel biointerfaces amenable for utilization in biotechnology and medicine. Recent studies indicate that proteins interact with surfaces through limited adsorption sites. Protein fragments such as amino acids and peptides can be used for interaction modeling between complex biological macromolecules and inorganic surfaces. During the last three decades, many valid and sensitive methods have been developed to measure the physical chemistry fundamentals of those interactions: isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), quartz crystal microbalance (QCM), total internal reflection fluorescence (TIRF), and attenuated total reflectance spectroscopy (ATR). The simplest and most affordable technique for the measurement of adsorption is the depletion method, where the change in sorbate concentration (depletion) after contact with solution-dispersed sorbent is calculated and assumed to be adsorbed. Adsorption isotherms based on depletion data provide all basic physicochemical data. However, adsorption from solutions requires longer equilibration times due to kinetic restrictions and sorbents with a high specific surface area, making it almost inapplicable to macroscopic fixed plane surfaces. Moreover, factors such as the instability of sols, nanoparticle aggregates, sorbent crystallinity, nanoparticle size distribution, pH of the solution, and competition for adsorption, should be considered while studying adsorbing peptides. Depletion data isotherm construction provides comprehensive physical chemistry data for literally every soluble sorbate yet remains the most accessible methodology, as it does not require expensive setups. This article describes a basic protocol for the experimental study of peptide adsorption on inorganic oxide and covers all critical points that affect the process.


Assuntos
Adsorção/fisiologia , Nanopartículas/química , Peptídeos/química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
4.
Langmuir ; 35(2): 538-550, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30554513

RESUMO

The affinity of biomolecules, such as peptides and proteins, with inorganic surfaces, is a fundamental topic in biotechnology and bionanotechnology. Amino acids are often used as "model" bits of peptides or proteins for studying their properties in different environments and/or developing functional surfaces. Despite great demand for knowledge about amino acid interactions with metal oxide surfaces, studies on the issue represent a fragmentary picture. In this paper, we describe amino acid adsorption on nanocrystalline anatase systematically at uniform conditions. Analysis of the Gibbs free adsorption energy indicated how the aliphatic, aromatic, polar, and charged side chain groups affect the binding affinity of the amino acids. Thermodynamic features of the l-amino acid adsorption receive thorough interpretation with calculated molecular descriptors. Theoretical modeling shows that amino acids complex with TiO2 nanoparticles as zwitterions via ammonium group.


Assuntos
Aminoácidos/química , Titânio/química , Adsorção , Relação Quantitativa Estrutura-Atividade , Temperatura , Termodinâmica
5.
Macromol Biosci ; 13(6): 707-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529898

RESUMO

Several types of fibrous material containing poly(3-hydroxybutyrate) (PHB), nanosized TiO2 -anatase (nanoTiO2 ), and chitosan oligomers are prepared by combining the electrospinning, electrospraying, and impregnation techniques. Simultaneous electrospinning/electrospraying provides uniform distribution of electrosprayed nanoTiO2 along the PHB fibers and throughout the mat. Hybrid materials of different design manifest excellent photocatalytic activity, even after repeated use. They exhibit high bactericidal activity against Escherichia coli. In addition, the fibrous scaffolds are compatible with human mesenchymal stem cells and provide a favorable environment for their development.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Nanopartículas/química , Engenharia Tecidual/métodos , Titânio/farmacologia , Antibacterianos/farmacologia , Catálise/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Escherichia coli/efeitos dos fármacos , Humanos , Hidroxibutiratos , Luz , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Azul de Metileno/química , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Poliésteres , Proibitinas , Reciclagem , Propriedades de Superfície , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...